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Abstract
Information on su(N ) tensor product multiplicities is neatly encoded in
Berenstein–Zelevinsky triangles. Here we study a generalization of these
triangles by allowing negative as well as non-negative integer entries. For
a fixed triple product of weights, these generalized Berenstein–Zelevinsky
triangles span a lattice in which one may move by adding integer linear
combinations of so-called virtual triangles. Inequalities satisfied by the
coefficients of the virtual triangles describe a polytope. The tensor product
multiplicities may be computed as the number of integer points in this convex
polytope. As our main result, we present an explicit formula for this discretised
volume as a multiple sum. As an application, we also address the problem of
determining when a tensor product multiplicity is non-vanishing. The solution
is represented by a set of inequalities in the Dynkin labels. We also allude
to the question of when a tensor product multiplicity is greater than a given
non-negative integer.

PACS numbers: 02.10.Xm, 02.20.-a, 11.25.Mj

1. Introduction

The decomposition of the tensor products of modules of simple Lie algebras has been studied
for a long time now. Many elegant results have been found for the multiplicities of the
decompositions, the so-called tensor product multiplicities. The relatively recent Berenstein–
Zelevinsky method of triangles [1] is an example. Although it is a powerful, symmetric
method, it is not explicit: triangles are constructed according to certain rules, and their
number is the required tensor product multiplicity. Here we show that a generalization of
these Berenstein–Zelevinsky (BZ) triangles allows us to work out a very explicit expression
for the multiplicities. A tensor product multiplicity is expressed as a multiple sum, counting
the number of integer points in a particular convex polytope, to be defined below. BZ triangles
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and our results pertain to the A-series; Ar = su(r + 1). We will sometimes write su(N ) with
N = r + 1.

We are interested in describing decompositions of tensor products of irreducible highest
weight modules of simple Lie algebras. They are usually written

Mλ ⊗Mµ =
⊕
ν

T νλ,µMν (1)

where Mλ is the module of highest weight λ and T νλ,µ is the tensor product multiplicity. We
study the equivalent but more symmetric problem of determining the multiplicity of the singlet
in the expansion of the triple product

Mλ ⊗Mµ ⊗Mν ⊃ Tλ,µ,νM0. (2)

If ν+denotes the highest weight conjugate to ν, we have Tλ,µ,ν = T ν
+

λ,µ. We will use the
shorthand notation λ⊗ µ⊗ ν to represent the left-hand side of (2).

An su(3) BZ triangle, describing a particular coupling (to the singlet) associated with the
triple product λ⊗ µ⊗ ν, is a triangular arrangement of nine non-negative integers:

m13

n12 l23

m23 m12

n13 l12 n23 l13

. (3)

These integers are related to the Dynkin labels of the three integrable highest weights by

m13 + n12 = λ1 n13 + l12 = µ1 l13 +m12 = ν1

m23 + n13 = λ2 n23 + l13 = µ2 l23 +m13 = ν2.
(4)

We call these relations outer constraints. The entries further satisfy the so-called hexagon
conditions

n12 +m23 = n23 +m12

m12 + l23 = m23 + l12

l12 + n23 = l23 + n12

(5)

of which only two are independent. They say that the lengths of opposite sides of the hexagon
must be equal, if the length of a segment is defined to be the sum of the two integers associated
with its endpoints. An su(3) BZ triangle is thus composed of one hexagon and three corner
points.

For su(4) the BZ triangle is defined in a similar way, in terms of 18 non-negative integers:

m14

n12 l34

m24 m13

n13 l23 n23 l24

m34 m23 m12

n14 l12 n24 l13 n34 l14

(6)

related to the Dynkin labels by

m14 + n12 = λ1 n14 + l12 = µ1 l14 +m12 = ν1

m24 + n13 = λ2 n24 + l13 = µ2 l24 +m13 = ν2

m34 + n14 = λ3 n34 + l14 = µ3 l34 +m14 = ν3.

(7)
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Furthermore, the su(4) BZ triangle contains three hexagons:

n12 +m24 = m13 + n23 n13 + l23 = l12 + n24 l24 + n23 = l13 + n34

n12 + l34 = l23 + n23 n13 +m34 = n24 +m23 n23 +m23 = m12 + n34

m24 + l23 = l34 +m13 m34 + l12 = l23 +m23 l13 +m23 = l24 +m12.

(8)

It is a general feature for any N that only two out of the three hexagon identities associated
with a particular hexagon are independent.

The su(N ) generalization is obvious; the triangle is built out of (N−1) (N−2)/2 hexagons
and three corner points. Simple examples of lower rank BZ triangles and their applications
may be found in [2].

2. Generalised and virtual Berenstein–Zelevinsky triangles

The generalization of the BZ triangles that we consider is obtained by weakening the constraint
that all entries are non-negative integers to arbitrary integers, negative as well as non-negative.
The hexagon identities and the outer constraints are still enforced. A triangle will be called a
true BZ triangle if all its entries are non-negative.

We consider a generalized BZ triangle associated with su(r + 1). Denoting the number of
entries Er and the number of hexagons Hr, we have

Er = 3
2 r(r + 1) Hr = 1

2 r(r − 1). (9)

For a given triple product λ⊗ µ⊗ ν, the set of associated triangles spans an Hr-dimensional
lattice. Each hexagon corresponds to two independent constraints on the triangle entries while
there are 3r outer constraints. This leaves

Er − (2Hr + 3r) = Hr (10)

parameters labelling the possible triangles. Among these, only a finite number are true BZ
triangles. This number is precisely the tensor product multiplicity of the triple coupling. For
example, when the singlet does not occur in the decomposition of the triple product, there are
no true BZ triangles in the lattice.

A special class of generalized BZ triangles is associated with the triple product 0 ⊗ 0 ⊗ 0.
We say they have weight (λ, µ, ν) = (0, 0, 0). According to the general argument above,
Hr = 1

2 r(r − 1) such triangles are linearly independent. We call them virtual triangles and
denote them using V. It is natural to exclude the triangle with all entries equal to zero from
the set of virtual triangles. It is the unique true BZ triangle in the lattice associated with the
triple product 0 ⊗ 0 ⊗ 0. In the cases of su(3) and su(4), virtual triangles have appeared in [3]
and [4], respectively.

A convenient basis for the virtual triangles is given by associating a simple distribution
of plus and minus ones (written 1 and 1̄ ≡ −1, respectively) with a given hexagon. All other
entries are zero. The distribution is

1
1 1̄ 1̄ 1

1̄ 1̄
1 1̄ 1̄ 1

1

. (11)

Thus, a basis virtual triangle will always have six entries equalling −1, and between three and
six entries equalling +1. The number of +1 entries depends on where the associated hexagon
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is situated in the generalized BZ triangle and the rank of su(r + 1) (three entries equal +1 for
su(3) only). That these virtual triangles are indeed linearly independent is obvious.

There are no virtual triangles in the case of su(2). In the case of su(3) there is one basis
virtual triangle

V =
1

1̄ 1̄
1̄ 1̄

1 1̄ 1̄ 1

(12)

while in the case of su(4) the three basis virtual triangles V1, V2 and V3 are

V1 =

1
1̄ 1̄

1̄ 1̄
1 1̄ 1̄ 1

0 1 0
0 0 0 0 0 0

V2 =

0
0 0

1 0
1̄ 1̄ 1 0

1̄ 1̄ 0
1 1̄ 1̄ 1 0 0

V3 =

0
0 0

0 1
0 1 1̄ 1̄

0 1̄ 1̄
0 0 1 1̄ 1̄ 1

. (13)

The generalization to higher rank su(r + 1) is straightforward. In section 3 we use another
choice of indices on V .

We are now in a position to generate all generalized BZ triangles associated with a given
triple coupling. Once a single generalized triangle is found, the lattice of triangles associated
with the triple coupling is spanned by adding integer linear combinations of the virtual
triangles. The choice of initial triangle is not important. We denote the integer coefficients as
linear coefficients. We emphasize that the Euclidean spaces spanned by the lattices are all of
dimension Hr, i.e., the dimension is independent of the triple coupling and depends only on
the rank of su(r +1).

Negative entries in (generalized) BZ triangles also appear in [5] . That work is mainly
devoted to the construction of tensor-product generating functions. A new method is proposed
based on elementary solutions to certain sets of linear equations related to the BZ triangles,
and for su(3) one of these solutions corresponds to a triangle with negative entries. The
appearance of negative entries is expected to be a general feature for higher su(N ) as well.
The elementary solutions are closely related to the so-called elementary couplings.

3. Polytopes, multiple sums and tensor product multiplicities

We shall now focus on the Hr-dimensional linear coefficient space and seek an algebraic
description of the tensor product multiplicities. The latter are computed by counting true
BZ triangles. Demanding that the entries of a true BZ triangle be non-negative, we obtain Er

inequalities the linear coefficients must satisfy. The inequalities depend on the choice of initial
triangle, and they correspond to a polyhedral combinatorial expression for the multiplicities
in linear coefficient space. The structure of the basis virtual triangles (cf (11), (12) and (13))
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ensures that all linear coefficients have upper as well as lower bounds. The polyhedron is
therefore bounded and such a polyhedron is called a polytope. It is easily seen to be convex.

In order to specify the polytope, we must find an initial triangle of weight (λ, µ, ν). It is
convenient to break the symmetry among the three weights, and first look at the unique true
triangle of weight (λ, µ, λ+ + µ+). For su(3), this triangle is

λ1

0 µ1

λ2 λ2

0 µ1 0 µ2

(14)

and the generalization to su(r + 1) is clear. Every highest weight ν in a coupling λ⊗ µ ⊗ ν
satisfies

ν = λ+ + µ+ −
r∑
i=1

niαi (15)

with ni ∈ Z�, where αi is the ith simple root. The coefficients ni are conveniently expressed
using dual Dynkin labels. A weight λ can be written

λ =
r∑
i=1

λi�
i =

r∑
i=1

λiα∨
i (16)

where {�i} and
{
α∨
i

}
are the sets of fundamental weights and simple co-roots, respectively.

The λi are the dual Dynkin labels, while the ordinary Dynkin labels are the λi. For simply
laced algebras, such as su(N ), αi is identical to the co-root α∨

i (with standard normalization
α2 = 2, for α a long root). Taking the scalar product of (15) with �i therefore gives

ni = (λ+)i + (µ+)i − νi . (17)

Generalized triangles of weight (0, 0, αi) are also easily constructed. An su(3) example is

1
1̄ 1

0 1̄
0 0 0 0

(18)

of weight (0, 0, α2). So, one can find a generalized triangle of weight (λ, µ, ν) by subtracting
non-negative integer multiples of triangles of weight (0, 0, αi), such as (18), from a triangle
like (14), of weight (λ, µ, λ+ + µ+).
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The result for su(r + 1) is the following generalized BZ triangle associated with the triple
product λ⊗ µ⊗ ν:

N ′
r

nr Nr
λ2 N ′

r−1
0 µ1 nr−1 Nr−1

λ3 λ3 N ′
r−2

0 µ1 0 µ2 nr−2 Nr−2

. .
. ...

...
. . .

λr−2 N ′
3

0 µ1 n3 N3

λr−1 λr−1 . . . λr−1 N ′
2

0 µ1 0 µ2 0 µr−2 n2 N2

λr λr λr λr λr N ′
1

0 µ1 0 µ2 0 µ3 . . . 0 µr−2 0 µr−1 n1 N1.

(19)

The entries ni, N ′
i Ni are defined by

ni = λr−i+1 + µr−i+1 − νi
Ni = (1 − δi1)ni−1 − ni + µr−i+1

= −λr−i+1 + (1 − δi1)λr−i+2 − (1 − δir )µr−i + µr−i+1 − (1 − δi1)νi−1 + νi (20)

N ′
i = νi −Ni
= λr−i+1 − (1 − δi1)λr−i+2 + (1 − δir )µr−i − µr−i+1 + νi − (1 − δir )νi+1 .

In order to describe the polytope explicitly, we need to label the virtual triangles. Our
choice is to write them as Vi,j or Vl depending on where the associated hexagons are situated.
The corresponding linear coefficients are denoted di,j and ηl:

�

� �

� ηr−1 �

� � � �

� dr−2,1 � ηr−2 �

� � � � � �

. .
. ...

...
. . .

� �

� � � �

� d2,1 � . . . � η2 �

� � � � � � � �

� d1,1 � d1,2 � � d1,r−2 � η1 �

� � � � � � . . . � � � � � �

(21)

Here a � indicates an unspecified entry while di,j and ηl are the linear coefficients of the virtual
triangles. They are depicted at the centres of the hexagons associated with the corresponding
virtual triangles. We have chosen two different notations for the virtual triangles (and their
associated linear coefficients) to reflect the positions of the corresponding hexagons in the
asymmetric initial triangle (19).
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Now, denoting the initial triangle T0, any triangle in the lattice of general triangles of
weight (λ, µ, ν) may be written as

T = T0 +
r−1∑
l=1

ηlVl +
i+j=r−1∑
i,j�1

di,jVi,j . (22)

The associated polytope of interest is in the Hr-dimensional space spanned by di,j and ηl . It
is bounded by the inequalities requiring that all entries in T are non-negative (whereby T is
ensured to be a pure BZ triangle). Hence, the position of the polytope depend on the initial
triangle T0. Nevertheless, the volume of the polytope, the number of integer points bounded
by the polytope, is independent of T0. By construction, this number is the tensor product
multiplicity Tλ,µ,ν of the triple coupling λ⊗ µ⊗ ν to the singlet.

Using the explicit choice of initial triangle (19) and the basis of virtual triangles discussed
above, it is simple to write down the inequalities defining the polytope. To illustrate, we list
the three inequalities given by the three entries located furthest to the right on the bottom line
of T :

µr−1 + d1,r−2 − η1 � 0 n1 − η1 � 0 N1 + η1 � 0. (23)

A similar polyhedral combinatorial expression is discussed in [6]. Convex polytopes
constructed there lie in the space of Gelfand–Tsetlin patterns (see, e.g., [6, 2]), while ours
lie in spaces associated with BZ triangles. Hence, for su(N ) their polytopes are embedded
in the Euclidean vector space R

N(N+1)/2, while ours may be embedded in the smaller space
R
(N−2)(N−1)/2. A more universal method of constructing polyhedral combinatorial expressions

for tensor product multiplicities, generalizing those of [6] and making sense for any simple
Lie algebra, may be found in [7].

3.1. Explicit multiple sum formula

As already stated, our polyhedral expression differs from the one discussed in [6, 7]. Its
structure allows us to extract an explicit multiple sum formula counting the integer points
bounded by the polytope. The multiple sum is over the linear coefficients, so different orders
of summation give a total of Hr! possible representations of the polytope volume. For
practical purposes, however, there are considerably fewer appropriate summation orders. Let
us illustrate our procedure for choosing an appropriate order of summation by considering the
following simple planar example.

Let a planar polytope be defined by the set of inequalities

1 � x � 4 8 � x + y � 14
6 � y 4 � y − x � 8.

(24)

The volume or areaAof the polytope (the number of integer points bounded by the inequalities)
can be written in two ways:

A = 16 =
4∑
x=1

min{x+8,14−x}∑
y=max{6,x+4,8−x}

1 =
11∑
y=6

min{4,y−4,14−y}∑
x=max{1,y−8,8−y}

1. (25)

The second expression is slightly more difficult to write, since the upper limit 11 on y must
be calculated from the intersection of faces (lines). Here the bounding lines x + y = 14 and
y − x = 8 intersect at the point (x, y) = (3, 11). This is a complication to avoid while writing
our formula, since it will involve many sums. In the first expression the explicitly written
lower limit y = 6 is redundant since the remaining two intersect at the point (2, 6). However,
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including redundant limits does not change the result, so we may choose to keep the limit
y = 6.

It is clear that an important difference between the two orders of summation is that we
have 1� x � 4, but only 6 � y. For example, if (24) is supplemented with y � 15, then the
upper limit 11 can be replaced simply by 15, and the formula is still valid. While it is true
that the new formula contains single sums with lower limits greater than upper limits, this is
a relatively small inconvenience. Those sums simply contribute 0.

So, while choosing an appropriate order of summation (over the summation variables
ηl and di,j ), it is crucial for any summation variable that all subsequent summation variables
have upper as well as lower bounds parallel to (or independent of ) the one under consideration.

This is a non-trivial consideration: the procedure does not apply to all polytopes. A trivial
example is provided by (24) with the inequality x � 4 removed.

Fortunately, the simplifying procedure applies to our polytope. A simple inspection
reveals that not all summation orders are appropriate, however. Nevertheless, in the general
case and in accordance with our procedure, we may express the volume of the polytope as

Tλ,µ,ν =
(∑
d1,1

)(∑
d2,1

∑
d1,2

)
· · ·
(∑
dr−2,1

· · ·
∑
d1,r−2

)(∑
ηr−1

· · ·
∑
η1

)
1 (26)

where the summation variables are bounded according to

max{−N1, d1,r−2,−N ′
2 + η2,−µr−2 + d1,r−2 − d2,r−3 + η2}

� η1 � min{n1, µr−1 + d1,r−2, λr − d1,r−2 + η2, n2 + d1,r−2 − η2, N
′
1, N2 + η2}

max{dl−1,r−l − dl−1,r−l−1 + dl,r−l−1,−N ′
l+1 + ηl+1,

−µr−l−1 + ηl+1 − (1 − δl,r−2)dl+1,r−l−2 + dl,r−l−1}
� ηl � min{λr−l+1 − dl,r−l−1 + dl−1,r−l + ηl+1,

nl+1 + dl,r−l−1 − ηl+1, Nl+1 + ηl+1} for 2 � l � r − 2

max{dr−2,1,−N ′
r } � ηr−1 � min{λ2 + dr−2,1, nr ,Nr }

max{d1,j−1,−µj−1 + d1,j−1 + d2,j−1 − (1 − δj,2)d2,j−2}
� d1,j � min{µj + d1,j−1, λr − d1,j−1 + d2,j−1} for 2 � j � r − 2

max{di,j−1 + di−1,j − di−1,j−1,−µj−1 + di,j−1 + di+1,j−1 − (1 − δj,2)di+1,j−2}
� di,j � λr−i+1 − di,j−1 + di+1,j−1 + di−1,j for 2 � i, j, i + j � r − 1

di−1,1 � di,1 � λr−i+1 + di−1,1 for 2 � i � r − 2

0 � d1,1 � min{µ1, λr }. (27)

From (15) and (17) it follows that the weights are subject to the condition

λi + µi + νi ∈ Z� i = 1, . . . , r (28)

ensuring the integer nature of the entries, and thus also the summation limits (27). The multiple
sum formula (26) is our main new result. We now demonstrate its usefulness by considering
an application and working out a few examples.

4. An application

It is of interest to know whether or not a coupling of a certain weight (λ, µ, ν) exists, without
having to work out the tensor product multiplicity. Based on our multiple sum formula (26)
and (27), one may derive a set of inequalities in the dual and ordinary Dynkin labels of the
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three weights, determining when the associated tensor product multiplicity is non-vanishing.
To illustrate the method, we discuss the inequalities for su(3) and su(4) and outline their
derivation. In principle, it is possible to repeat the procedure for higher rank, but even for
su(4) the derivation is very cumbersome. We believe that similar results exist for all simple
Lie algebras, and hope to report more general results later.

The dimension of the linear coefficient space for su(3) is one, so the tensor product
multiplicity may be represented by a single sum:

Tλ,µ,ν =
min{µ1,λ2,λ

2+µ2−ν1 ,λ1+µ1−ν2,−λ1+λ2+µ1−ν1+ν2,λ2+µ1−µ2+ν1−ν2}∑
η=max{0,λ2+µ1−µ2−ν1,−λ1+λ2+µ1−ν2}

1. (29)

The weights are subject to the integer constraint (28). Note that the summation limits are
not symmetric in the weights. This is simply because we have chosen an asymmetric initial
triangle. The summation (29) is non-vanishing if and only if the upper limit is greater than or
equal to the lower limit. This condition yields 6 × 3 = 18 inequalities:

0 � λi, µi, νi for i = 1, 2

max{λ1 − λ2 + µ1 − µ2,−λ1 + µ2, λ2 − µ1} � ν1 � λ2 + µ2

max{−λ1 + λ2 − µ1 + µ2, λ1 − µ2,−λ2 + µ1} � ν2 � λ1 + µ1 (30)

max{−λ2 − µ1 + µ2,−λ1 + λ2 − µ2} � ν1 − ν2

� min{λ1 − µ1 + µ2, λ1 + λ2 + µ1}.
Expressing the inequalities in terms of ordinary Dynkin labels, one should bear in mind

that the summation variable increases in steps of one while the quadratic-form matrix involves
a factor of 1/3. A similar factor 1/N is present for higher rank su(N ).

In the case of su(4) the tensor product multiplicity may be written as a triple sum

Tλ,µ,ν =
min{µ1,λ3}∑
d=0

min{λ2+d,λ1+µ1−ν3,−λ1+λ2+µ1−ν2+ν3}∑
η2=max{d,−λ1+λ2+µ1−ν3}

×
min{λ3+µ3−ν1,µ2+d,λ3−d+η2,λ

2+µ2−ν2+d−η2,λ
3+µ2−µ3+ν1−ν2,−λ2+λ3−µ1+µ2−ν1+ν2+η2}∑

η1=max{λ3+µ2−µ3−ν1 ,d,−λ2+λ3−µ1+µ2−ν2+ν3+η2,−µ1+d+η2}
1.

(31)

The weights are subject to the integer constraint (28). For a multiple sum like this, the
inequalities are obtained by first considering the interior summation over η1, leading to
6 × 4 = 24 inequalities which may depend on the remaining two summation variables:
four of them depend only on the weights, six depend on d but not η2, while 14 depend on η2.
Treating the latter in the same way as the upper and lower bounds on the η2-summation, we
obtain a total of 13 × 6 = 78 inequalities from the η2-consideration. Repeating the procedure
for d leads to a total of 54 × 10 = 540 inequalities in addition to the ones already derived from
the η1- and η2-considerations. This huge set of inequalities may be reduced considerably and
we find the following constraints on the Dynkin labels (expressed in terms of dual as well as
ordinary ones)

0 � λi, µi, νi for i = 1, 2, 3

max
{
λ3 − µ1, λ3 − λ3 − µ1 + µ1,−λ1 + µ3,−λ1 + λ1 + µ3 − µ3

}
� ν1 � λ3 + µ3

max
{|λ2 − µ2|, |λ2 − λ2 − µ2 + µ2|, |λ1 − λ3 + µ1 − µ3|} � ν2 � λ2 + µ2

max
{
λ1 − µ3, λ1 − λ1 − µ3 + µ3,−λ3 + µ1,−λ3 + λ3 + µ1 − µ1

}
� ν3 � λ1 + µ1
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max{λ2 − λ3 − µ1,−λ1 + µ2 − µ3, λ1 − λ2 + µ1 − µ2}
� ν1 − ν1

� min{λ2 − λ3 + µ3, λ3 + µ2 − µ3}
max

{−λ1 + λ3 + µ2 − µ2, λ2 − λ2 − µ1 + µ3, λ1 − λ3 + µ2 − µ2,

λ2 − λ2 + µ1 − µ3,−λ2 + µ2 − µ2, λ
2 − λ2 − µ2

}
(32)

� ν2 − ν2

� min
{
λ2 − λ2 + µ2, λ2 + µ2 − µ2

}
max{λ2 − λ1 − µ3,−λ3 + µ2 − µ1, λ3 − λ2 + µ3 − µ2}

� ν3 − ν3

� min{λ2 − λ1 + µ1, λ1 + µ2 − µ1}
max

{−λ1 + λ3 − µ2,−λ2 − µ1 + µ3, λ2 − λ2 + µ2 − µ2
}

� ν1 − ν3

� min
{−λ1 + λ3 + µ2, λ2 − µ1 + µ3, λ2 − λ2 + µ2 − µ2

}
.

A recent discussion [8] includes a brief review of the problem of determining when a
tensor product multiplicity is non-vanishing. The focus there is on gl(N ) (and therefore also on
su(N )) and the results are provided in the form of polyhedral combinatorial expressions. Our
prescription described above is in general more explicit than the results obtained previously.
For lower rank su(N ) though, the explicit inequalities may be obtained using various alternative
approaches.

4.1. A refinement

Here we shall indicate how one may derive sets of inequalities determining when a tensor
product multiplicity is greater than a given non-negative integer K

Tλ,µ,ν > K. (33)

The case K = 0 was discussed above.
Our approach is straightforward since the problem translates into studying when a convex

polytope has a (discretized) volume bigger than K. To illustrate, let us consider su(3). In this
case the volume is expressed as a single sum (29), so (33) is equivalent to requiring

min
{
µ1, λ2, λ

2 + µ2 − ν1, λ1 + µ1 − ν2,−λ1 + λ2 + µ1 − ν1 + ν2, λ2 + µ1 − µ2 + ν1 − ν2}
− max{0, λ2 + µ1 − µ2 − ν1,−λ1 + λ2 + µ1 − ν2} � K. (34)

This leaves us the following 18 inequalities refining (30)

K � λi, µi, νi for i = 1, 2

max{λ1 − λ2 + µ1 − µ2,−λ1 + µ2, λ2 − µ1} +K � ν1 � λ2 + µ2 −K
max{−λ1 + λ2 − µ1 + µ2, λ1 − µ2,−λ2 + µ1} +K � ν2 � λ1 + µ1 −K (35)

max{−λ2 − µ1 + µ2,−λ1 + λ2 − µ2} +K � ν1 − ν2

� min{λ1 − µ1 + µ2 − λ1 + λ2 + µ1} −K.
To the best of our knowledege, this is a new result.

In the case of su(4) the situation is already much more complicated. That is because the
polytope is three dimensional, and we cannot immediately use the triple-sum formula (31).
We recall that our simplifying method for obtaining an appropriate order of summation, may
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include redundant summations contributing zero to the final expression. We may therefore lose
crucial information if we only consider the multiple sum formula. The remedy is to consider
the original polytope, and require the defining faces to embrace a volume of at least the desired
value. We would then be led to consider three-dimensional partitions of K + 1, which is
beyond the scope of the present paper. For lower values of K the problem is straightforward,
though.

5. Conclusion

By virtue of virtual BZ triangles we have obtained a polyhedral combinatorial expression for
the su(N ) tensor product multiplicities, different from those discussed in [6, 7]. The main
merit of our expression is that it admits a simple measurement of the convex polytope volume
in terms of a multiple sum formula. The latter is then a new and explicit way of expressing
the tensor product multiplicities of su(N ).

As an application, one may derive explicit bounds on a triple of weights determining
when the associated coupling to the singlet exists. To illustrate, the bounds were written for
su(3) and su(4). Also included was a brief discussion on how to generalize this to bounds
describing Tλ,µ,ν > K .

We believe that our multiple sum representation of the tensor product multiplicities
provides a significant computational improvement over previous (combinatorial) results. In
particular, it is expected to lead to considerable simplifications when implemented in computer
programs.

It is our hope that our results may find applications to the computation of fusion rules in
conformal field theory with affine Lie group symmetry, the so-called WZW theories. Since
tensor product multiplicities correspond to the infinite-level limit of fusion multiplicities, it is
helpful to have simple descriptions of the former in order to understand the latter.
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